至于第三类电磁推射技术,就比较科幻了,主要是用于航天器的发射,其发射轨道长度一般在千米级别,其末速度可达8k/s(第一宇宙速度),弹射质量普遍在吨级以上。
    从这三类电磁发射技术可以看出,在具体讨论电磁发射技术的时候,这里面可以总结出一个非常需要注意的技术指标,那就是加速度g值!
    对于电磁弹射器来说,这是一个至关重要的指标!
    因为,对于一般人来说,超过g的加速度就难以忍受,即便是久经训练的飞行员也只能短暂承受不超过9g的加速度,超过限度就有可能产生短期或永久的身体伤害乃至死亡。
    因此,和各种设备同一样,有g值的限制,譬如说一般的民航客机就不能超过25个g,否则就有空中解体和结构损坏的可能。
    即便是战斗机,其可承受的g值也相当有限,例如f5在最初设计中,其可承受的最大结构加速度值也不超过65g 。
    而在电磁发射领域,由于其可以实现相当稳定的加速过程,其发射过程可以近似简化为牛顿力学中的零初速度匀加速过程。
    根据相应的运动公式,其发射过程中所需的加速度其实只受到发射轨道长度s和末速度v两项的影响,更精确一些的说,其加速度和轨道长度成反面(轨道越长,所需的加速度越小);和末速度(最终速度)的平均值的一半成正比(要求的末速度越大,其所需的加速度越大,而且成平方式递增)。
    由此可知,航母用电磁弹射器的加速度必须在6g以下,而电磁炮和近防炮的加速度却能达到45000g以上!
    因此,相比于蒸汽弹射器,电磁弹射器其实是非常稳定、可调的,而且具有较低的g值,这绝对是它最突出的一大优势;
    然而,成也如此,败也如此,稳定、可调还好说,但较低的g值,绝对考验着弹射器的设计指标和科幻程度。
    一方面需要较低的g值,而另一方面却需要短时的瞬时速度,对于脉冲功率变换系统以及脉冲发射装置就是个极大的考验,而这,也就是马院士一直不能解决的最大瓶颈!
    不过,对于刘峰来说,他已经想到了两种方法可以改善这些问题,当然,最后能不能成功也不一定,还需要他进一步的对这些装置做到了熟于心,能够在脑海中模拟装置的运行才行。
    但目前看来,他至少已经有了80的把握了。
    随着时间的逐渐流逝,两人一直在实验室里待了好几个小时,最终,在天色将晚之前,刘峰自信地笑了:
    从这三类电磁发射技术可以看出,在具体讨论电磁发射技术的时候,这里面可以总结出一个非常需要注意的技术指标,那就是加速度g值!
    对于电磁弹射器来说,这是一个至关重要的指标!
    因为,对于一般人来说,超过g的加速度就难以忍受,即便是久经训练的飞行员也只能短暂承受不超过9g的加速度,超过限度就有可能产生短期或永久的身体伤害乃至死亡。
    因此,和各种设备同一样,有g值的限制,譬如说一般的民航客机就不能超过25个g,否则就有空中解体和结构损坏的可能。
    即便是战斗机,其可承受的g值也相当有限,例如f5在最初设计中,其可承受的最大结构加速度值也不超过65g 。
    而在电磁发射领域,由于其可以实现相当稳定的加速过程,其发射过程可以近似简化为牛顿力学中的零初速度匀加速过程。
    根据相应的运动公式,其发射过程中所需的加速度其实只受到发射轨道长度s和末速度v两项的影响,更精确一些的说,其加速度和轨道长度成反面(轨道越长,所需的加速度越小);和末速度(最终速度)的平均值的一半成正比(要求的末速度越大,其所需的加速度越大,而且成平方式递增)。
    由此可知,航母用电磁弹射器的加速度必须在6g以下,而电磁炮和近防炮的加速度却能达到45000g以上!
    因此,相比于蒸汽弹射器,电磁弹射器其实是非常稳定、可调的,而且具有较低的g值,这绝对是它最突出的一大优势;
    然而,成也如此,败也如此,稳定、可调还好说,但较低的g值,绝对考验着弹射器的设计指标和科幻程度。
    一方面需要较低的g值,而另一方面却需要短时的瞬时速度,对于脉冲功率变换系统以及脉冲发射装置就是个极大的考验,而这,也就是马院士一直不能解决的最大瓶颈!
    不过,对于刘峰来说,他已经想到了两种方法可以改善这些问题,当然,最后能不能成功也不一定,还需要他进一步的对这些装置做到了熟于心,能够在脑海中模拟装置的运行才行。
    但目前看来,他至少已经有了80的把握了。
    随着时间的逐渐流逝,两人一直在实验室里待了好几个小时,最终,在天色将晚之前,刘峰自信地笑了: